跳到主要内容

221. [✔][M]最大正方形

在一个由 '0''1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

img

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

img

输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:

输入:matrix = [["0"]]
输出:0

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j]'0''1'

题解:

动态规划解题套路框架


// @lc code=start
function maximalSquare(matrix: string[][]): number {
let m = matrix.length;
let n = matrix[0].length;

let side = 0;

let dp = new Array(m).fill(1).map(() => new Array(n).fill(0));

for (let i = 0; i < m; i++) {
dp[i][0] = parseInt(matrix[i][0]);
}

for (let j = 0; j < n; j++) {
dp[0][j] = parseInt(matrix[0][j]);
}

for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (matrix[i][j] === '1') {
dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1;
} else {
continue;
}
}
}

for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
side = Math.max(side, dp[i][j]);
}
}

return side * side;
};
// @lc code=end